M COMPUTER ORGANIZATION AND DESIGN 5th

NoneAN AUTHANN The Hardware/Software Interface Seluisly

| Chapter 5

| Set-Associative Cache
Architecture

| Performance Summary

I When CPU performance increases:
= Miss penalty becomes more significant.
= Greater proportion of time spent on memory stalls.
Increasing clock rate:
= Memory stalls account for more CPU cycles.

Can’t neglect cache behavior when evaluating system
performance.

Chapter 5 — Set Associative Caches

Review: Reducing Cache Miss Rates #1

I
Allow more flexible block placement

In a direct mapped cache a memory block maps to
exactly one cache block.

At the other extreme, we could allow a memory block to
be mapped to any cache block — fully associative
cache.

A compromise is to divide the cache into sets, each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set - specified by the
index field - and can be placed any where in that set.

Associative Caches

Fully associative cache:
Allow a given block to go in any cache entry.
On a read, requires all blocks to be searched in parallel.
One comparator per entry (expensive).
n-way set associative:
Each set contains n entries.
Block number determines which set the requested item is
located in.
Search all entries in a given set at once.
n comparators (less expensive).

Chapter 5 — Set Associative Caches

Spectrum of Associativity

For a cache with 8 entries:

One-way set associative
(direct mapped)
Block Tag Data

0

; Two-way set associative
2 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data

LA N Y I

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

N N N N

Four-Way Set Associative Cache

| 28 = 256 sets each 3130 ... 131211 ... 210 . Byte offset
with four ways (each [| |
with one block). 159 J22 s
Index
ndex V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 \AL a 1 AL 4 1 AL Pa 1 AL a
2 VA y \v) 2 VA y 1 2 VA y 4 2 VA y J
—
253 253 253
254 254 254
255 255 255
L 4 L 4 ¥
l | .32
U

, \/
Hit Data

I -
} I
- | |A4x1 select/

Chapter 5 — Set Associative Caches

Another Direct-Mapped Catch Example

| Consider the main-memory word reference string

Start with an empty cache - all
blocks initially marked as not valid. 04040404

0 miss 4 miss 0 miss 4 miss
1 1
00 | Mem(0) 00 Mem(O\L+ 01 | Mem(4) 00 Mem(0\4
0 miss 01 4miss o 0 miss 01 4 miss
01 [Mem(4) 08. | Mem(B) 01 | Mem(4) 00 Mem(C\L+

8 requests, 8 misses
Ping-pong effect due to conflict misses - two memory
locations that map into the same cache block.

Set Associative Cache Example

I Main Memory
0xx

Txx
0xx
1xx

« Each word is 4 bytes.

* Two low-order bits
select the byte in the
word.

OXX' « Two Sets per Way.
1xx

0xx
1xx
0xx

Txx
OxXX Use next 1 low order

1xx Memory address bit to
oxx determine which

1xx cache set (i.e., modulo
xx the number of sets in
1xx the cache).

Q2: How do we find it?

Q1: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits to tell if
the memory block is in
the cache.

Chapter 5 — Set Associative Caches

2-way Set Associative Memory

| Consider the main memory word reference string

Start with an empty cache - all
blocks initially marked as not valid. 04040404

0 miss 4 miss 0 hit 4 hit
000|] Mem(0 000|] Mem(0 000] Mem(0) 000] Mem(0)
010] Mem(4 010] Mem(4) 010] Mem(4

8 requests, 2 misses

Solves the ping pong effect in a direct-mapped cache
due to conflict misses since now two memory locations
that map into the same cache set can co-exist.

Range of Set Associative Caches

| For a fixed size cache, each increase by a factor of two
in associativity doubles the number of blocks per set
(i.e., the number or ways) and halves the number of sets
— decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit.

Used for tag compare Selects the set Selects the word in the block
1 t !
| Tag | Index | Block offset |Byte|offset

. e Increasing associativit
Decreasing associativity 4—._’ 9 y
|

Fully associative (only

Direct mapped |<_ I one set). Tag is all the
(only one way). address bits except block
Smaller tags, only a and byte offset.

single comparator.

Chapter 5 — Set Associative Caches

How Much Associativity is Right?

Increased associativity decreases miss rate
But with diminishing returns.

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000

1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

Costs of Set Associative Caches

N-way set associative cache costs:
N comparators - delay and area.
MUX delay - set selection - before data is available.
Data available after set selection, and Hit/Miss decision. In a

direct-mapped cache, the cache block is available before
the Hit/Miss decision:

So its not possible to just assume a hit and continue and
recover later if it was a miss.

When a miss occurs, which way’s block do we pick for
replacement?

Chapter 5 — Set Associative Caches

Replacement Policy

Direct mapped - no choice.

Set associative:
Prefer non-valid entry, if there is one.
Otherwise, choose among entries in the set.

Least-recently used (LRU) is common:
Choose the one unused for the longest time:

Simple for 2-way, manageable for 4-way, too complicated
beyond that.

Random

Oddly, gives about the same performance as LRU for high
associativity.

Benefits of Set Associative Caches

| The choice of direct-mapped or set-associative depends on
the cost of a miss versus the benefit of a hit.
15% === === mm e e

12% A

9% -------

Miss rate

6% A

3% A

- . 64KB . _128KiB

O T T T 1
One-way Two-way Four-way Eight-way
Associativity
Largest gains are in going from direct mapped to 2-way

(20%+ reduction in miss rate).

Chapter 5 — Set Associative Caches

Reducing Cache Miss Rates #2

I
Use multiple levels of caches

With advancing technology, we have more than enough
room on the die for bigger L1 caches or for a second
level of cache — normally a unified L2 cache - it holds
both instructions and data - and in some cases even a
unified L3 cache.

For our example, CPligea Of 2, 100 cycle miss penalty
(to main memory) and a 25 cycle miss penalty (to
UL2$%), 36% load/stores, a 2% (4%) L1 1$ (D$) miss
rate, add a 0.5% UL2$ miss rate.

CPly = 2 + .02x25 + .36x.04x25 + .005x100 +
.36%.005%x100 = 3.54
(as compared to 5.44 with no L29$)

Multilevel Cache Design Considerations

Design considerations for L1 and L2 caches are different:
Primary cache should focus on minimizing hit time in support
of a shorter clock cycle:

Smaller capacity with smaller block sizes.
Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times:
Larger capacity with larger block sizes.
Higher levels of associativity.
The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache — so it can be smaller (i.e.,
faster) but have a higher miss rate.
For the L2 cache, hit time is less important than miss rate:
The L2$ hit time determines L1$’s miss penalty.

Chapter 5 — Set Associative Caches

| Memory Sort Example

1200

Radix Sort

Instructions/item
g 8 8
8 8 8

H
8

Quicksort
200

4 8 16 32 64 128 256 512 1024 2048 4096
a Size (K items to sort)

2000

Radix Sort

8 8
g8 8

Clock cycles/item
g
8

400 M

4 8 16 32 64 128 256 512 1024 2048 4096
b. Size (K items to sort)

Radix Sort

E
FIGURE 5.18 Comparing Quicksort and
sorted, and (c) cache misses per itend sorted\This data is frg/ a paper by LaM

numbers would change for newer compgters, the iea still holgé. Due to such r

been invented that take memory hieraréﬁy,into accol to pggain its algorithmic a
basic idea of cache optimizations is to use [afft#i8'data in a block r edly before
2009 Elsevier, Inc. All rights reserved. 0 o o T T T e 10 2048 4096

o Size (K items to sort)

ed per item sorted, (b) time per item
arca and Ladner [1996]. Although the
Its, new versions of Radix Sort have
dvantages (see Section 5.11). The

2 it is replaced on a miss. Copyright ©

| Two Machines’ Cache Parameters

L1 cache organization | Split instruction and data caches Split instruction and data caches

L1 cache size 32 KiB each for instructions/data 32 KiB each for instructions/data
per core

L1 cache associativity | 4-way (1), 4-way (D) set associative 4-way (1), 8-way (D) set associative

L1 replacement Random Approximated LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate(?) Write-back, No-write-allocate

L1 hit time (load-use) |1 clock cycle 4 clock cycles, pipelined

L2 cache organization | Unified (instruction and data) Unified (instruction and data) per core

L2 cache size 128 KiB to 1 MiB 256 KiB (0.25 MiB)

L2 cache associativity | 8-way set associative 8-way set associative

L2 replacement Random(?) Approximated LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate (?) Write-back, Write-allocate

L2 hit time 11 clock cycles 10 clock cycles

L3 cache organization - Unified (instruction and data)

L3 cache size = 8 MiB, shared

L3 cache associativity - 16-way set associative

L3 replacement - Approximated LRU

L3 block size - 64 bytes

L3 write policy - Write-back, Write-allocate

L3 hit time - 35 clock cycles

Chapter 5 — Set Associative Caches

Cortex-A8 Data Cache Miss Rates

l 25.0% - ---m-moemoeemommsnoesoeooioioooo

20.0% ~

15.0% -

Miss Rate

—&— L1 Data Miss Rate
L2 Data Miss Rate

10.0% -

5.0%

0.0%

FIGURE 5.45 Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small
version of SPEC2000. Applications with larger memory footprints tend to have higher miss rates
in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references,
including those that hit in L1. (See Elaboration in Section 5.4.) Mcf is known as a cache buster.

Intel Core i7 920 Data Cache Miss Rates
l L
L1 Data Miss Rate
L2 Data Miss Rate
L —A— L3 Data Miss Rate
15% -
L1 T
5% -
0% -
@ & & Fd & O P ¢F &
(\‘°Q>°$@<°e°»o4>‘°'\?'<3°fo°’g?>@
o &o .,\Q,) Q@&O +(§b¢0 > & S
FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920
running the full integer SPECCPU2006 benchmarks.

Chapter 5 — Set Associative Caches

10

Summary: Improving Cache Performance

I 1. Reduce the time to hit in the cache:

Smaller cache.
Direct mapped cache.
Smaller blocks.
For writes:
No write allocate — no “hit” on cache, just write to write buffer.

Write allocate — to avoid two cycles (first check for hit, then
write) pipeline writes via a delayed write buffer to cache.

2. Reduce the miss rate:
Bigger cache.
More flexible placement (increase associativity).
Larger blocks (16 to 64 bytes typical).

Victim cache — small buffer holding most recently replaced
blocks.

Summary: Improving Cache Performance

3. Reduce the miss penalty:
Smaller blocks.
Use a write buffer to hold dirty blocks being replaced so
you don’t have to wait for the write to complete before
reading.
Check write buffer (and/or victim cache) on read miss —
may get lucky.
For large blocks fetch, critical word first.
Use multiple cache levels — L2 cache is often not tied to
CPU clock rate.

Chapter 5 — Set Associative Caches

11

Summary: The Cache Design Space

Several interacting dimensions: Cache Size
Cache size.
Block size. Associativity
Associativity.
Replacement policy.
Write-through vs. write-back.
Write allocation.
The optimal choice is a compromise
Depends on access characteristics:

Hard to predict. Bad
Depends on technology / cost.
Good | Factor Factor B

Simplicity often wins.

Block Size

Less More

Concluding Remarks

Fast memories are small, large memories are slow:
We want fast, large memories. ®
Caching gives this illusion. ©

Principle of locality:

Programs use a small part of their memory space
frequently.

Memory hierarchy

L1 cache <> L2 cache «> ... <> DRAM memory
<> disk

Chapter 5 — Set Associative Caches

12

