
Chapter 5 — Set Associative Caches 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 5

Set-Associative Cache
Architecture

Performance Summary
n When CPU performance increases:

n Miss penalty becomes more significant.
n Greater proportion of time spent on memory stalls.

n Increasing clock rate:
n Memory stalls account for more CPU cycles.

n Can’t neglect cache behavior when evaluating system
performance.

Chapter 5 — Set Associative Caches 2

Review: Reducing Cache Miss Rates #1

Allow more flexible block placement

n In a direct mapped cache a memory block maps to
exactly one cache block.

n At the other extreme, we could allow a memory block to
be mapped to any cache block – fully associative
cache.

n A compromise is to divide the cache into sets, each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set - specified by the
index field - and can be placed any where in that set.

Associative Caches
n Fully associative cache:

n Allow a given block to go in any cache entry.
n On a read, requires all blocks to be searched in parallel.
n One comparator per entry (expensive).

n n-way set associative:
n Each set contains n entries.
n Block number determines which set the requested item is

located in.
n Search all entries in a given set at once.
n n comparators (less expensive).

Chapter 5 — Set Associative Caches 3

Spectrum of Associativity
n For a cache with 8 entries:

Four-Way Set Associative Cache
n 28 = 256 sets each

with four ways (each
with one block).

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

Chapter 5 — Set Associative Caches 4

Another Direct-Mapped Catch Example

0 4 0 4

0 4 0 4

n Consider the main-memory word reference string
0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4 01 Mem(4)0

00
00 Mem(0)

01 4

00 Mem(0)
01 4

00 Mem(0)
01 401 Mem(4)0

00
01 Mem(4)

000

Start with an empty cache - all
blocks initially marked as not valid.

§ 8 requests, 8 misses
n Ping-pong effect due to conflict misses - two memory

locations that map into the same cache block.

Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order
memory address bit to
determine which
cache set (i.e., modulo
the number of sets in
the cache).

Tag Data

Q1: Is it there?

Compare all the cache
tags in the set to the
high order 3 memory
address bits to tell if
the memory block is in
the cache.

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

• Each word is 4 bytes.
• Two low-order bits

select the byte in the
word.

• Two Sets per Way.

Chapter 5 — Set Associative Caches 5

2-way Set Associative Memory

0 4 0 4

n Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all
blocks initially marked as not valid.

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

§ 8 requests, 2 misses

n Solves the ping pong effect in a direct-mapped cache
due to conflict misses since now two memory locations
that map into the same cache set can co-exist.

Range of Set Associative Caches
n For a fixed size cache, each increase by a factor of two

in associativity doubles the number of blocks per set
(i.e., the number or ways) and halves the number of sets
– decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit.

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative (only
one set). Tag is all the
address bits except block
and byte offset.

Direct mapped
(only one way).
Smaller tags, only a
single comparator.

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

Chapter 5 — Set Associative Caches 6

How Much Associativity is Right?
n Increased associativity decreases miss rate

n But with diminishing returns.
n Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000
n 1-way: 10.3%
n 2-way: 8.6%
n 4-way: 8.3%
n 8-way: 8.1%

Costs of Set Associative Caches
n N-way set associative cache costs:

n N comparators - delay and area.
n MUX delay - set selection - before data is available.
n Data available after set selection, and Hit/Miss decision. In a

direct-mapped cache, the cache block is available before
the Hit/Miss decision:

n So its not possible to just assume a hit and continue and
recover later if it was a miss.

n When a miss occurs, which way’s block do we pick for
replacement?

Chapter 5 — Set Associative Caches 7

Replacement Policy
n Direct mapped - no choice.
n Set associative:

n Prefer non-valid entry, if there is one.
n Otherwise, choose among entries in the set.

n Least-recently used (LRU) is common:
n Choose the one unused for the longest time:

n Simple for 2-way, manageable for 4-way, too complicated
beyond that.

n Random
n Oddly, gives about the same performance as LRU for high

associativity.

Benefits of Set Associative Caches
n The choice of direct-mapped or set-associative depends on

the cost of a miss versus the benefit of a hit.

n Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate).

Chapter 5 — Set Associative Caches 8

Reducing Cache Miss Rates #2
Use multiple levels of caches

n With advancing technology, we have more than enough
room on the die for bigger L1 caches or for a second
level of cache – normally a unified L2 cache - it holds
both instructions and data - and in some cases even a
unified L3 cache.

n For our example, CPIideal of 2, 100 cycle miss penalty
(to main memory) and a 25 cycle miss penalty (to
UL2$), 36% load/stores, a 2% (4%) L1 I$ (D$) miss
rate, add a 0.5% UL2$ miss rate.

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54
(as compared to 5.44 with no L2$)

Multilevel Cache Design Considerations
n Design considerations for L1 and L2 caches are different:

n Primary cache should focus on minimizing hit time in support
of a shorter clock cycle:

n Smaller capacity with smaller block sizes.
n Secondary cache(s) should focus on reducing miss rate to

reduce the penalty of long main memory access times:
n Larger capacity with larger block sizes.
n Higher levels of associativity.

n The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache – so it can be smaller (i.e.,
faster) but have a higher miss rate.

n For the L2 cache, hit time is less important than miss rate:
n The L2$ hit time determines L1$’s miss penalty.

Chapter 5 — Set Associative Caches 9

Memory Sort Example

FIGURE 5.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item sorted, (b) time per item
sorted, and (c) cache misses per item sorted. This data is from a paper by LaMarca and Ladner [1996]. Although the
numbers would change for newer computers, the idea still holds. Due to such results, new versions of Radix Sort have
been invented that take memory hierarchy into account, to regain its algorithmic advantages (see Section 5.11). The
basic idea of cache optimizations is to use all the data in a block repeatedly before it is replaced on a miss. Copyright ©
2009 Elsevier, Inc. All rights reserved.

Two Machines’ Cache Parameters

Chapter 5 — Set Associative Caches 10

Cortex-A8 Data Cache Miss Rates

FIGURE 5.45 Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small
version of SPEC2000. Applications with larger memory footprints tend to have higher miss rates
in both L1 and L2. Note that the L2 rate is the global miss rate; that is, counting all references,
including those that hit in L1. (See Elaboration in Section 5.4.) Mcf is known as a cache buster.

Intel Core i7 920 Data Cache Miss Rates

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920
running the full integer SPECCPU2006 benchmarks.

Chapter 5 — Set Associative Caches 11

Summary: Improving Cache Performance
1. Reduce the time to hit in the cache:

n Smaller cache.
n Direct mapped cache.
n Smaller blocks.
n For writes:

n No write allocate – no “hit” on cache, just write to write buffer.
n Write allocate – to avoid two cycles (first check for hit, then

write) pipeline writes via a delayed write buffer to cache.

2. Reduce the miss rate:
n Bigger cache.
n More flexible placement (increase associativity).
n Larger blocks (16 to 64 bytes typical).
n Victim cache – small buffer holding most recently replaced

blocks.

Summary: Improving Cache Performance

3. Reduce the miss penalty:
n Smaller blocks.
n Use a write buffer to hold dirty blocks being replaced so

you don’t have to wait for the write to complete before
reading.

n Check write buffer (and/or victim cache) on read miss –
may get lucky.

n For large blocks fetch, critical word first.
n Use multiple cache levels – L2 cache is often not tied to

CPU clock rate.

Chapter 5 — Set Associative Caches 12

Summary: The Cache Design Space

n Several interacting dimensions:
n Cache size.
n Block size.
n Associativity.
n Replacement policy.
n Write-through vs. write-back.
n Write allocation.

n The optimal choice is a compromise
n Depends on access characteristics:

n Hard to predict.
n Depends on technology / cost.

n Simplicity often wins.

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Concluding Remarks

n Fast memories are small, large memories are slow:
n We want fast, large memories. L
n Caching gives this illusion. J

n Principle of locality:
n Programs use a small part of their memory space

frequently.
n Memory hierarchy

n L1 cache « L2 cache « … « DRAM memory
« disk

